Polynomial kernels for 3-leaf power graph modification problems
نویسندگان
چکیده
منابع مشابه
Polynomial Kernels for 3-Leaf Power Graph Modification Problems
A graph G = (V,E) is a 3-leaf power iff there exists a tree T whose leaves are V and such that (u, v) ∈ E iff u and v are at distance at most 3 in T . The 3-leaf power graph edge modification problems, i.e. edition (also known as the closest 3-leaf power), completion and edge-deletion, are FTP when parameterized by the size of the edge set modification. However polynomial kernel was known for n...
متن کاملTwo Edge Modification Problems without Polynomial Kernels
Given a graph G and an integer k, the Π Edge Completion/Editing/Deletion problem asks whether it is possible to add, edit, or delete at most k edges in G such that one obtains a graph that fulfills the property Π . Edge modification problems have received considerable interest from a parameterized point of view. When parameterized by k, many of these problems turned out to be fixed-parameter tr...
متن کاملPolynomial Kernels for Weighted Problems
Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number n of items. We answer both questions affirmatively by using an algorithm for compr...
متن کاملOn problems without polynomial kernels
Kernelization is a central technique used in parameterized algorithms, and in other techniques for coping with NP-hard problems. In this paper, we introduce a new method which allows us to show that many problems do not have polynomial size kernels under reasonable complexity-theoretic assumptions. These problems include kPath, k-Cycle, k-Exact Cycle, k-Short Cheap Tour, k-Graph Minor Order Tes...
متن کاملLossy Kernels for Graph Contraction Problems
We study some well-known graph contraction problems in the recently introduced framework of lossy kernelization. In classical kernelization, given an instance (I, k) of a parameterized problem, we are interested in obtaining (in polynomial time) an equivalent instance (I ′, k′) of the same problem whose size is bounded by a function in k. This notion however has a major limitation. Given an app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2010
ISSN: 0166-218X
DOI: 10.1016/j.dam.2010.07.002